Nature-Inspired Particle Mechanics Algorithm for Multi-Objective Optimization

نویسنده

  • Xiang Feng
چکیده

In many real world optimization problems, several optimization goals have to be considered in parallel. For this reason, there has been a growing interest in multi-objective optimization (MOO) in the past many years. Several new approaches have recently been proposed, which produced very good results. However, existing techniques have solved mainly problems of “low dimension”, i.e., with less than 10 optimization objectives. This chapter proposes a new computational algorithm whose design is inspired by particle mechanics in physics. The algorithm is capable of solving MOO problems of high dimensions. There is a deep and useful connection between particle mechanics and high dimensional MOO. This connection exposes new information and provides an unfamiliar perspective on traditional optimization problems and approaches. The alternative of particle mechanics algorithm (PMA) to traditional approaches can deal with a variety of complicated, large scale, high dimensional MOO problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Optimization of Stirling Heat Engine Using Gray Wolf Optimization Algorithm (TECHNICAL NOTE)

The use of meta-heuristic optimization methods have become quite generic in the past two decades. This paper provides a theoretical investigation to find optimum design parameters of the Stirling heat engines using a recently presented nature-inspired method namely the gray wolf optimization (GWO). This algorithm is utilized for the maximization of the output power/thermal efficiency as well as...

متن کامل

Discrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)

Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Optimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm

Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008